Extensions 1→N→G→Q→1 with N=C2 and Q=C23.16D6

Direct product G=N×Q with N=C2 and Q=C23.16D6
dρLabelID
C2×C23.16D696C2xC2^3.16D6192,1039


Non-split extensions G=N.Q with N=C2 and Q=C23.16D6
extensionφ:Q→Aut NdρLabelID
C2.1(C23.16D6) = Dic3.5C42central extension (φ=1)192C2.1(C2^3.16D6)192,207
C2.2(C23.16D6) = Dic3⋊C42central extension (φ=1)192C2.2(C2^3.16D6)192,208
C2.3(C23.16D6) = Dic3.5M4(2)central extension (φ=1)96C2.3(C2^3.16D6)192,277
C2.4(C23.16D6) = Dic3×C22⋊C4central extension (φ=1)96C2.4(C2^3.16D6)192,500
C2.5(C23.16D6) = C3⋊(C428C4)central stem extension (φ=1)192C2.5(C2^3.16D6)192,209
C2.6(C23.16D6) = C3⋊(C425C4)central stem extension (φ=1)192C2.6(C2^3.16D6)192,210
C2.7(C23.16D6) = C2.(C4×D12)central stem extension (φ=1)192C2.7(C2^3.16D6)192,212
C2.8(C23.16D6) = C2.(C4×Dic6)central stem extension (φ=1)192C2.8(C2^3.16D6)192,213
C2.9(C23.16D6) = Dic3.M4(2)central stem extension (φ=1)96C2.9(C2^3.16D6)192,278
C2.10(C23.16D6) = C24⋊C4⋊C2central stem extension (φ=1)96C2.10(C2^3.16D6)192,279
C2.11(C23.16D6) = C24.55D6central stem extension (φ=1)96C2.11(C2^3.16D6)192,501
C2.12(C23.16D6) = C24.56D6central stem extension (φ=1)96C2.12(C2^3.16D6)192,502
C2.13(C23.16D6) = C24.14D6central stem extension (φ=1)96C2.13(C2^3.16D6)192,503
C2.14(C23.16D6) = C24.15D6central stem extension (φ=1)96C2.14(C2^3.16D6)192,504

׿
×
𝔽